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CONVERGENCE OF COMPUTATIONAL METHODS AND STABILITY

OF SELF-BALANCED STRESSES UNDER SHRINKAGE

OF SPHERICAL INCLUSIONS OF A DAMAGEABLE MATERIAL

UDC 539.3:517.946V. V. Struzhanov and V. V. Bashurov

Some iterative methods for calculating self-balanced stresses under shrinkage of a ball inclusion en-
closed in a spherical matrix of a physically nonlinear damageable material. The stability of this
system was studied using methods of catastrophe theory. It has been established that the beginning of
divergence of the proposed iterative processes coincides with the moment of transition of the system
to an unstable position of equilibrium.
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Introduction. Some composite manufacturing operations cause shrinkage of inclusions (filling agent), which
is sometimes so large that the tensile strains of the inclusions reach values for which their material enters an unstable
supercritical stage of deformation (softening stage) due to the occurrence of multiple defects. For a macroscopic
description of the material behavior at this stage, the Drukker stability postulate does not apply [1]. We note
that the strain softening property is inherent in structurally nonuniform materials, such as composites, concrete,
geomaterials, etc., [2–4].

The occurrence of regions of physically unstable material can make the equilibrium position of the entire
system unstable, and under an infinitesimal perturbation, the system suddenly enters the nearest stable position of
equilibrium. As a result of this jump, the inclusions can be damaged.

Apparently, a convergent iterative process of calculating self-balanced stress fields determines the stable
position of equilibrium of the system. If the process diverges, relationship of this phenomenon with the physical
state of the body, as a rule, is difficult to establish.

In the present paper, we consider a number of iterative procedures for calculating self-balanced stresses
arising from shrinkage of a spherical inclusion of a physically nonlinear material enclosed in a spherical matrix.

1. Computational Model and Properties of Material. We consider a composite consisting of an
elastic matrix and a filling agent in the form of spherical inclusions of a nonlinear material. After manufacture of
the composite, the inclusions are subjected to shrinkage determined by the negative volume strain e∗ in the absence
of relationships of the inclusions with the spherical region. Because the enclosing matrix prevents the inclusions from
varying in volume, a self-balanced field of residual stresses arises in the composite and the inclusions are stretched.
If the inclusions are far apart, the stress and strain fields near them hardly influence each other. In this case, the
computational model consists of an inner sphere (inclusion) of radius a (region Va) and a an enclosing thick-walled
sphere (matrix) of outer radius b (region Vb). We assume that under loading, the material of the sphere always
remains in an elastic state with Young’s modulus E, Poisson’s constant ν, and bulk modulus K. The material of
the inclusion have the same characteristics at the elasticity stage.

In the computational model at hand, shrinkage of the inner sphere gives rise to uniform extension of the
inner sphere. Therefore, to describe the properties of the material, it suffices to obtain a complete p–e stress–
strain diagram (p is the volumetric stress and e is the volumetric strain) (Fig. 1). On the diagram, pt, pb, et,
and eb are the proportional and strength limits for uniform extension and corresponding volumetric strains and
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Fig. 1

ez is the failure strain. At the hardening stage (ascending branch of the p–e diagram after the proportional limit)
and softening stages (descending branch), the properties of the material determine the secant (instantaneous) bulk
modulus Kp = dp/de (Kp < K).

In uniform extension, macroscopic plastic strains do not arise. Therefore, the nonlinearity of the p(e) diagram
is due to damage of the material by microcracks, micropores, etc. In this case, two versions of unloading are possible:
1) without residual strain with the secant modulus Ks = p/e (line 1 in Fig. 1), where the damage is absolutely
brittle; 2) with formation of insignificant residual strains ep and unloading modulus Ku = p/(e − ep), Ku < K

(line 2 in Fig. 1) if near the fracture, for example, at the microcrack tips, local microplastic regions form.
Using a similar line of reasoning as in [5, 6], we obtain the relation

p = K(1− ω)(e− ep), (1.1)

where the parameter ω characterizes the damage of the material by microdefects:

ω = 1−Ku/K. (1.2)

Using expression (1.1), we obtain

dp = K(1− ω)(de− dep)−K(e− ep) dω.

At the same time, the relation for increments dp = Kp de is valid. Hence,

(e− ep) dω
de

+ ω
(

1− dep

de

)
= 1− Kp

K
− dep

de
. (1.3)

If residual deformations do not arise, formula (1.3) becomes

e
dω

de
+ ω = 1− Kp

K
. (1.4)

Equation (1.3) defines the damage residual strain kinetics and Eq. (1.4) defines the damage kinetics in the absence
of residual strains. Direct check shows that expression (1.2) is a solution of Eq. (1.3), and for Ku = Ks, it is a
solution of Eq. (1.4).

After multiplication by de, equality (1.3) can be written as deeω = d[ω(e− ep)] = depω − dep, where

depω = (1−Kp/K) de (1.5)

is the increment of the pseudoplastic strain in the case Ku = K (line 3 in Fig. 1). A similar representation holds
for expression (1.4): deω = depω, where eω = ωe.

The decomposition of the total strain e into the components ep, eep = p/K, ee = p/Ku = e−ep, and eeω = ωee

used in the above reasoning is shown in Fig 1.

550



Writing Eq. (1.1) with the use of the indicated strain components, we obtain

p = K[e− ep − ω(e− ep)] = K[e− (ep + eeω)] = K(e− epω), (1.6)

p = K[e− ep − ω(e− ep)] = K[e− (ep + eeω)] = K(e− epω), (1.6)

where epω is total pseudoplastic strain determined by unloading with modulus K. Its variation depends on variations
in ep and ω and is described by Eq. (1.3) [or (1.4)] and, formally, by equality (1.5).

2. Initial-Boundary-Value Problem. To obtain the governing relation in the region Va taking into
account its shrinkage, we assume that the inner sphere is free of constraints and specify a shrinkage strain e∗. As
a result, the points of the boundary perform radial displacements directed to the center of the sphere and equal
to e∗a. We again unite the regions Va and Vb. After establishment of equilibrium, the points of the inner boundary
of the region Vb perform displacements e′′a directed from the center. Obviously, e∗a + e′′a = e′a. Therefore, the
sphere Va is subjected to a volumetric tensile strain e′′ related to the stress p′′ by relation (1.1). Thus, in the
region Va, the following relation is valid:

p′′ = K(1− ω)(e′′ − ep) = K(1− ω)(e′ − e∗ − ep). (2.1)

In the region Vb, in which shrinkage is absent, the following equalities holds:

σ′′r = E[(1− ν)ε′r + 2νε′θ]/(mn), σ′′θ = E(νε′r + ε′θ)/(mn),

σ′′ϕ = σ′′θ , ε′ϕ = ε′θ.
(2.2)

Here m = 1 + ν, n = 1 − 2ν, σr, σθ, σϕ, εr, εθ, and εϕ are the stress and strain in spherical coordinates, whose
origin coincides with the center of the inner sphere; two primes denote self-balanced stresses and one prime denotes
strains that satisfy the compatibility conditions.

Relations (2.1) and (2.2) should be supplemented by the equilibrium equation

dσ′′r
dr

+ 2
σ′′r − σ′′θ

r
= 0,

Cauchy relations

ε′r =
du

dr
, ε′θ =

u

r

(u is the radial displacement), and the boundary conditions σ′′r |r=b = 0 (the outer boundary is free of stresses)
and u|r=0 = 0 (the central point does not move). As a result, for specified e∗, ep, and ω, we have a closed system
of equations for determining the stress–strain states

3. Iterative Process Using Pseudoplastic Strain. The difficulty in solving the problem formulated
above lies in the fact that the strain ep and damage ω are not known beforehand. Their values depend on the
strains, which, in turn, depend on ep and ω. Therefore, we deal with a coupled boundary-value problem. To solve
this problem, one should employ special iterative methods.

Let us consider a method based on the use of pseudoplastic strain. Deriving the governing relation for the
region Va using formula (1.6), we obtain the relation

p′′ = K(e′ − e∗ − epω).

Let us split the initial problem into a primal problem with the governing law

p′′ = K(e′ − e∗ − epω)

and a correcting problem with the law

p′′ = K(e′ − e∗).

To these relations, we add formulas (2.2) for the region Vb, equilibrium equations, Cauchy relations, and the
boundary conditions given above. In addition, the correcting problem is supplemented by the kinetic equation (1.5).

Solution of the primal problem defines the stress–strain state in an absolutely elastic compound sphere with
shrinkage of the inclusion. Solution of the correcting problem yields the stress–strain state in an elastic body with
the inner sphere having a residual plastic strain epω. Apparently, for specified values of e∗ and epω, the solution of
the original problem is the sum of the solutions of the primal and correcting problems.
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Fig. 2

The general form of the solution of the primal problem is given by the formulas

p′′ = K(e′ − e∗), e′ = Ae∗, u = Ae∗r, r ∈ Va,
σ′′r = Me∗(1− b3r−3), σ′′θ = σ′′ϕ = Me∗(1 + 0.5b3r−3),

ε′r = Ne∗(n−mb3r−3), ε′θ = ε′ϕ = Ne∗(n+ 0.5mb3r−3),
(3.1)

u = Ne∗(nr + 0.5mb3r−2), r ∈ Vb.
Using the continuity property of radial stresses and displacements, we find

M =
2a3E

b3(m+ 2n)
, A =

b3m+ 2a3n

b3(m+ 2n)
, N =

M

E
.

The solution of the correcting problem for a specified value of epω is also defined by formulas (3.1) after replacement
of the strain e∗ by epω.

We assume that for a certain value of e∗ < 0, the composite sphere is in equilibrium and in the region
Va, the pseudoplastic strain, secant bulk modulus, unloading modulus, and damage are equal to epω, Kp, Ku, ω,
respectively. In the initial position, the stress–strain state in the region Va is defined by the scalars e = epω + e′′

and p′′ = Ke′′ (Fig. 2), and in the region Vb, it is defined by the strain vector function ε′ = (ε′r, ε
′
θ, ε
′
ϕ) and stresses

σ′′ = (σ′′r , σ
′′
θ , σ

′′
ϕ). Thus, the stress–strain state of the entire compound sphere can be defined by the following pairs

of scalars and vectors: {e, ε′}, {p′′,σ′′}.
We subject the inclusion to an additional small shrinkage ∆e∗ (∆e∗ < 0). Using formulas (3.1) and sub-

stituting e∗ by ∆e∗, we obtain a solution of the primal problem: p′′1 , e′′1 = e′1 − ∆e∗, ε′1, σ′′1 . In this case, the
expressions {p1, σ1} = {p′′,σ′′} + {p′′1 ,σ′′1} and {e1, ε1} = {e, ε′} + {e′′1 , ε′1} represent the first approximation to
the solution of the original problem for the shrinkage strain e∗ + ∆e∗. Then, for the value of e1, we determine the
characteristics of the material Kp

1 = Kp(e1), Ku
1 = Ku(e1), and ω1 = 1−Ku

1 /K in the region Va.
Next, substituting the quantities de = e′′1 and Kp into relation (1.5), we calculate dep1ω. Setting e∗ = dep1ω in

formulas (3.1), we obtain a solution of the correcting problem {e′2, ε′2}, {p′′2 ,σ′′2} and find the second approxima-
tion {p2, σ2} = {p1, σ1} + {p′′2 ,σ′′2}, {e2, ε2} = {e1, ε1} + {e′2, ε′2}. For the value of e2, we have Kp

2 = Kp(e2),
Ku

2 = Ku(e2) and ω2 = 1 −Ku
2 /K. Again, using formulas (1.5), where de = e′2 and Kp = Kp

1 , we calculate the
increment dep2ω; using formulas (3.1), where e∗ = dep2ω, we obtain the following correcting solution and find the
third approximation, etc. This iterative process is shown schematically in Fig. 2.

The convergence of the method determines the convergence of the iterative series for strains in the region Va.
We have

e = e′′ + (A− 1)∆e∗ +
∞∑
i=0

Ci, (3.2)

where C0 = A(1 −Kp
0/K), Ci = BiCi−1, Kp

0 = Kp, and Bi = A(1 −Kp
i /K). The numerical series with positive

terms (3.2) converges for Bi < 1. If at the jth step, Bj = B∗ = 1 and, hence, the secant modulus reaches the value
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Kp
∗ = −K 2n(b3 − a3)

b3m+ 2a3n
, (3.3)

two cases are possible. In the first case, Kp
∗ = min

e
Kp. Then, at all subsequent steps, B < 1. In the second case,

Kp
∗ > min

e
Kp, (3.4)

and at the next steps, B > B∗, i.e., the terms of the series begin to increase. Thus, equality (3.3) is a necessary
condition, and in the aggregate with inequality (3.4), it is a necessary and sufficient condition that defines the
beginning of divergence of the iterative process.

After reaching the minimum, the modulus Kp increases, tending to the limiting value Kp(ez) = 0. Therefore,
at a certain step, the equality B = B∗ is reached again, and from this moment, the series (3.2) becomes convergent.

We note that for the calculated position of equilibrium in the region Va, the values of the material parameters
Kp, Ku, and ω are equal to the values obtained at the last iterative step.

4. Iterative Method for a Material with Absolutely Brittle Damage. Using law (2.1) for ep = 0,
namely

p′′ = Ks(e′ − e∗) (4.1)

[Ks = K(1− ω) is the secant modulus], we construct the corresponding iterative procedure.
In the initial positions of equilibrium described above, we replace Ku by Ks and e by e′′ = e′ − e∗ (Fig. 3).

We perturb these positions by specifying an additional shrinkage ∆e∗. Considering the system elastic, we find the
stress–strain state for the total shrinkage e∗1 = e∗ + ∆e∗. It is given by formulas (3.1) after replacement of the
governing relation in the region Va by law (4.1) and the strains e∗ by e∗1. The unknown constants are obtained
using the continuity of radial displacements:

M = M1(Ks) = 2a3Ks(e′′)EH−1, A = A1(Ks) = Ks(e′′)hH−1, N = N1 = M1E
−1.

Here h = 2a3n + mb3 and H = Ks(e′′)h + 2E(b3 − a3). For the value of e′′1 = [A1(Ks)− 1]e∗1 in the region Va,
we determine the new characteristics of the material Kp

1 = Kp(e′′1), Ks
1 = Ks(e′′1), and ω1 = 1 − Ks

1/K and
solve the elastic problem with these parameters. We have M = M1(Ks

1) and A = A1(Ks
1). From the strains

e′′2 = [A1(Ks
1)− 1]e∗1, we obtain the characteristics Kp

2 = Kp(e′′2), Ks
2 = Ks(e′′2), and ω2 = 1 − Ks

2/K and again
solve the elastic problem, etc. This iterative procedure is shown schematically in Fig. 3; it represents the simple
iterative scheme

e′′n+1 = ψ(e′′n),

where ψ(e′′n) = [A1(Ks(e′′n))− 1]e∗1. It is known that the method converges if the function ψ satisfies the Lipschitz
condition

|ψ(e′′n+1)− ψ(e′′n)| < k|e′′n+1 − e′′n|

with the constant k < 1 [7]. In this case, the principle of compressing maps holds.
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The compressibility condition is satisfied if sup |dψ/de′′| < 1. Differentiating the function ψ taking into
account that dKs/de′′ = (Kp −Ks)/e′′, we obtain

dψ

de′′
= 2E(b3 − a3)e∗1h(Kp −Ks)(e′′)−1H−2. (4.2)

Because of the continuity of displacements at r = a, the following equality should hold in the position of equilibrium:

e′a = M1e
∗
1(na+ 0.5mb3a−2)E−1.

Taking into account that e′ = e′′ + e∗1 and performing appropriate transformations, we obtain

He′′ = −2E(b3 − a3)e∗1.

Using this equality and adding and subtracting the term 2E(b3−a3) in the numerator in expression (4.2), we obtain

dψ

de′′
= 1− Kph+ 2E(b3 − a3)

H
.

From analysis of this expression, it follows that the Lipschitz condition is not satisfied when the instantaneous
modulus Kp reaches the value Kp

∗ [see (3.3)].
Thus, in this case, too, satisfaction of condition (3.3) is also necessary for the beginning of divergence of

the iterative process. Following the same line of reasoning as above, we find that the aggregation of equality (3.3)
and inequality (3.4) is a necessary and sufficient condition for the beginning of divergence of the process. It is also
obvious that, eventually, the process converges because the modulus Kp necessarily reaches values larger than Kp

∗ .
5. Iterative Method for Arbitrary Fracture. We construct an iterative procedure for solving the

problem with the general law (2.1), in which we designate K(1− ω) = Ku. In the initial position of equilibrium
with shrinkage e∗ in the region Va, the secant bulk modulus, unloading modulus, residual strain, total strain, and
stress are equal to Kp, Ku, ep, e = ep + e′′, and p′′ = Kue′′, respectively (Fig. 4). We perturb this position of
equilibrium by specifying an additional shrinkage ∆e∗.

Fixing the value of ep, we determine the stress–strain state with shrinkage e∗1 = e∗+∆e∗. It is evaluated from
formulas (3.1), in which K is replaced by Ku and e∗ by the sum e∗1 + ep. Determining the values of the constants
from the continuity condition for displacements and radial stresses, we have A = A1(Ku) and M = M1(Ku). Then,
e′′1 = (A1 − 1)(e∗1 + ep), and the total strain in the region Va equals e1 = ep + e′′1 (Fig. 4). For the value of e1, we
find Ku

1 = Ku(e1), Kp
1 = Kp(e1), ω1 = 1−Ku

1 /K, and the total residual strain ep1(e1) = e1− p(e1)/Ku
1 . Fixing the

value of ep1, we again use formulas (3.1), where A = A1(Ku
1 ) and M = M1(Ku

1 ). We have e′′2 = (A1 − 1)(e∗1 + ep1),
e2 = ep1 + e′′2 , Ku

2 = Ku(e2), Kp
2 = Kp(e2), ω2 = 1−Ku

2 /K, and ep2(e2) = e2 − p(e2)/Ku
2 . Further calculations are

repeated. This iterative procedure is shown schematically in Fig. 4 and represents the simple iterative scheme

en+1 = ϕ(en),
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where ϕ(en) = A1(Ku(en))(e∗1 + epn(en))− e∗1. Let us check satisfaction of the Lipschitz condition. We obtain

dϕ

de
=

d

de

(Ku(e)h(e∗1 + ep(e))
H(Ku)

)
=
[dKu

de
h(e∗1 + ep)2E(b3 − a3) +KuhH

dep

de

]
H−2. (5.1)

The expression for dep/de is obtained from formula (1.3) after substitution of the value of ω from formula (1.2):

dep

de
= 1− Kp

Ku
+
e− ep

Ku

dKu

de
. (5.2)

In the position of equilibrium, the following equality should also be satisfied:

e′a = M1(e∗1 + ep)(na+ 0.5mb3a−2)E−1. (5.3)

Here M1 = 2a3Ku(e)E/H(Ku) and e′ = e∗1 + e (e∗1 < 0, e > 0). Then, expression (5.3) leads to

He = Kueph− 2E(b3 − a3)e∗1. (5.4)

Substituting expressions (5.2) and (5.4) into formula (5.1) and performing appropriate transformations, we obtain

dϕ

de
=
Ku −Kp

H
h =

Kuh+ 2E(b3 − a3)−Kph− 2E(b3 − a3)
H

= 1− Kph+ 2E(b3 − a3)
Kuh+ 2E(b3 − a3)

.

From analysis of this expression, it follows that the Lipschitz condition is not satisfied for Kp = Kp
∗ [see (3.3)]. This

condition is necessary for the beginning of divergence of the process. By the same reasoning as above, we elucidate
that the aggregation of equality (3.3) and inequality (3.4) is a necessary and sufficient condition for the beginning
of divergence of the process. We note that, eventually, the process converges because the modulus Kp necessarily
reaches values larger than Kp

∗ .
6. Stability of Self-Balanced Stresses. To determine the physical sense of the obtained divergence

conditions of the iterative processes considered above, we study the stability of the self-balanced stress field resulting
from shrinkage. Considering the compound sphere as a discrete mechanical system, we can assume that the shrinkage
strain e∗ is a specified control parameter and the displacement of the boundary points of the inner sphere v is a
state variable of the system. The total energy of the sphere is written as a two-parameter function of the control
and state parameters:

Π(v, ε∗) = 4πa2

v∫
0

p(v/a) dv + 4πa
Kn

h
(b3 − a3)w2,

where the first term is the strain energy of the inner sphere for displacement of the points of its boundary at a
distance v and the second term is the potential energy of elastic strains of the second sphere for displacement of
the inner boundary at a distance w = e∗a+ v provided that the outer boundary is free of stresses.

It is known that the critical points of the function Π determined from the solution of the equation
dΠ
dv

= 4πa2p(v/a) + 8πa
Kn

h
(b3 − a3)(e∗a+ v) = 0, (6.1)

specify all positions of equilibrium of the system [8]. In three-dimensional space with the coordinate axes e∗, v,
and d (d = b− a), the aggregation of this point forms the surface Q — the so-called Whitney cusp-catastrophe [8]
(Fig. 5). The doubly degenerate points at which stable positions of equilibrium becomes unstable and vice versa
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are determined by simultaneous solution of Eq. (6.1) and the equation obtained by setting the determinant of the
Hess matrix of the function Π equal to zero [8]:

d2Π
dv2

= Kp + 2K(b3 − a3)
n

h
= 0, (6.2)

also form assembly lines L. The triply degenerate stagnation point is determined by solving Eqs. (6.1) and (6.2)
and the equation

d3Π
dv3

=
dKp

dv
=
dKp

de

1
a

= 0. (6.3)

This point is the assembly origin (point C in Fig. 5).
If the value of d is small, the trajectory of the equilibrium states on the surface Q does not intersect the

assembly line (line 1 in Fig. 5) as the control parameter e∗ increases and all the equilibrium positions of the stress
fields are stable. If the trajectory of equilibrium states on the surface Q intersects the assembly line (line 2 in
Fig. 5), the system loses stability and suddenly enters a new position of equilibrium (trajectory from the upper
sheet of the surface “springs” onto the lower sheet). Therefore, for the control parameter value corresponding to
the point of intersection of the assembly line, the self-balanced stress state is unstable and its any perturbation by
an additional small shrinkage results in a loss of stability. Solving Eq. (6.2), we find that at the given moment,
condition (3.3) is satisfied, i.e., Kp = Kp

∗ . Since Eq. (6.3) is not satisfied in this case, inequality (3.4) holds. If
the trajectory of equilibrium states on the surface Q passes through the point C (line 3 in Fig. 5), loss of stability
does not occur. The point C is determined by simultaneous solution of Eqs. (6.2) and (6.3). Hence it follows that
Kp = Kp

∗ is minimal and inequality (3.4) is not satisfied.
Thus, the physical sense of the divergence conditions of the iterative processes lies in the fact that the

beginning of divergence corresponds to a loss of stability of the equilibrium of the compound sphere and the self-
balanced stress field perturbed by an additional small shrinkage (equilibrium positions) is unstable.
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